We present ObPose, an unsupervised object-centric generative model that learns to segment 3D objects from RGB-D video in an unsupervised manner. Inspired by prior art in 2D representation learning, ObPose considers a factorised latent space, separately encoding object-wise location (where) and appearance (what) information. In particular, ObPose leverages an object's canonical pose, defined via a minimum volume principle, as a novel inductive bias for learning the where component. To achieve this, we propose an efficient, voxelised approximation approach to recover the object shape directly from a neural radiance field (NeRF). As a consequence, ObPose models scenes as compositions of NeRFs representing individual objects. When evaluated on the YCB dataset for unsupervised scene segmentation, ObPose outperforms the current state-of-the-art in 3D scene inference (ObSuRF) by a significant margin in terms of segmentation quality for both video inputs as well as for multi-view static scenes. In addition, the design choices made in the ObPose encoder are validated with relevant ablations.


翻译:我们介绍ObPose, 这是一种以不受监督的方式从 RGB-D 视频中学习 3D 对象的不受监督的外向基因模型, 以不受监督的方式从 RGB- D 视频中分解 3D 对象。 在2D 演示学习中的先前艺术的启发下, ObPose 考虑一个因素化的潜在空间, 单独编码物体偏向位置( 在哪里) 和外观( 是什么) 信息 。 特别是, ObPose 利用一个通过最小体积原则定义的物体的方形, 作为一种新颖的感应偏差, 来了解部件的方位。 为了实现这一点, 我们建议一种高效的、 氧化的近似方法, 直接从神经光场( NERF) 中恢复对象形状。 结果, ObPose 模型场景是代表单个物体的内RF的构成。 在用 YCB 数据集评价未受监控的场景分解时, ObPose 超越了当前3D 场景推理( ObSuSRF) 的状态, 在分解质量方面有很大的差差差差差差差差差差值。 为了显著差差差差差差差差差值。 为了。 为了两种差差差差差值, 我们OBBBs 中所作的设计选择是相关的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员