Strategic behavior is a fundamental problem in a variety of real-world applications that require some form of peer assessment, such as peer grading of homeworks, grant proposal review, conference peer review of scientific papers, and peer assessment of employees in organizations. Since an individual's own work is in competition with the submissions they are evaluating, they may provide dishonest evaluations to increase the relative standing of their own submission. This issue is typically addressed by partitioning the individuals and assigning them to evaluate the work of only those from different subsets. Although this method ensures strategyproofness, each submission may require a different type of expertise for effective evaluation. In this paper, we focus on finding an assignment of evaluators to submissions that maximizes assigned evaluators' expertise subject to the constraint of strategyproofness. We analyze the price of strategyproofness: that is, the amount of compromise on the assigned evaluators' expertise required in order to get strategyproofness. We establish several polynomial-time algorithms for strategyproof assignment along with assignment-quality guarantees. Finally, we evaluate the methods on a dataset from conference peer review.
翻译:战略行为是各种现实世界应用中的一个根本问题,这些应用需要某种形式的同侪评估,如对家庭作业进行同侪评级、赠款建议审查、对科学文件进行同侪审查、对各组织雇员进行同侪评估等。由于个人的工作与他们所评估的提交材料竞争激烈,因此他们可能提供不诚实的评价,以提高自己提交材料的相对地位。这个问题通常通过对个人进行分割和指派他们只评价来自不同子集的工作来解决。虽然这种方法可以确保战略的可靠性,但每份提交材料可能需要不同种类的专门知识,以便进行有效评价。在本文件中,我们着重寻找评价人员指派给那些在战略可靠性限制下最大限度地发挥所分配评价人员专门知识作用的提交材料。我们分析战略的可靠性:这就是,为获得战略的可靠性,对所分配的评价人员的专门知识进行多少妥协。我们为战略性指派的有节制性的工作以及任务质量保障设立了几个多年度算法。最后,我们评估会议同侪审查的数据集的方法。