The current best known $[239, 21], \, [240, 21], \, \text{and} \, [241, 21]$ binary linear codes have minimum distance 98, 98, and 99 respectively. In this article, we introduce three binary Goppa codes with Goppa polynomials $(x^{17} + 1)^6, (x^{16} + x)^6,\text{ and } (x^{15} + 1)^6$. The Goppa codes are $[239, 21, 103], \, [240, 21, 104], \, \text{and} \, [241, 21, 104]$ binary linear codes respectively. These codes have greater minimum distance than the current best known codes with the respective length and dimension. In addition, with the techniques of puncturing, shortening, and extending, we find more derived codes with a better minimum distance than the current best known codes with the respective length and dimension.


翻译:目前最著名的 $[239, 21], \, [240, 21],\,\,\\ text{和} \, [241, 21]$二进制线性代码有最小距离 98, 98, 和 99。 在本条中, 我们引入了三种二进制哥帕代码, 与Goppa 多边代码$( x ⁇ 17} + 1), 16, (x ⁇ 16} + x), 6,\ text { 和 } (x ⁇ 15} + 1), 。 Goppa 代码是 $ 239, 21, 103], \, [240, 21, 104], \, \,\ text{和} $ 。 这些代码的最小距离比目前已知的最佳代码的长度和维度要大。 此外, 我们发现比当前已知的最佳代码的长度和维度要远得多, 我们发现比当前最已知的代码的最小距离。

0
下载
关闭预览

相关内容

【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
43+阅读 · 2020年11月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月29日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
43+阅读 · 2020年11月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2020年12月1日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月29日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员