In this paper, we discuss two-stage encoding algorithms capable of correcting a fraction of asymmetric errors. Suppose that we can transmit $n$ binary symbols $(x_1,\ldots,x_n)$ one-by-one over the Z-channel, in which a $1$ is received if and only if a $1$ is transmitted. At some moment, say $n_1$, it is allowed to use the complete feedback of the channel and adjust further encoding strategy based on the partial output of the channel $(y_1,\ldots,y_{n_1})$. The goal is to transmit as much information as possible under the assumption that the total number of errors is limited by $\tau n$, $0<\tau<1$. We propose an encoding strategy that uses a list-decodable code at the first stage and a high-error low-rate code at the second stage. This strategy and our converse result yield that there is a sharp transition at $\tau=\max\limits_{0<\omega<1}\frac{\omega + \omega^3}{1+4\omega^3}\approx 0.44$ from positive rate to zero rate for two-stage encoding strategies. As side results, we derive lower and upper bounds on the size of list-decodable codes for the Z-channel and prove that for a fraction $1/4+\epsilon$ of asymmetric errors, an error-correcting code contains at most $O(\epsilon^{-3/2})$ codewords.
翻译:在本文中, 我们讨论能够纠正部分不对称错误的两阶段编码算法 。 假设我们可以在 Z 通道上一对一传输美元二进制符号$( x_ 1,\ ldots, x_ n) $1, 只有在传输一美元的情况下才能收到一美元 。 在某个时刻, 比如 $_ 1, 允许使用频道的完整反馈, 并根据频道部分输出$( y_ 1,\\ ldots, y ⁇ n_ 1} 来调整进一步的编码战略 。 目标是在Z 通道上一对一一传输尽可能多的信息, 假设错误总数受$\ tau n$, $0\ tau < 1美元 。 我们提出一个编码战略, 在第一阶段使用列表可降低代码, 在第二阶段使用高error低的代码。 这个策略和我们的逆结果显示, 在 $\\ max% max% adexcoal=_ disal_ lablexal_ laus_ lax a mess dead_ ral_ ral_ disal_ ral_ lax_ laxxxxxxxxxxxxxx_ roxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx