Robots often need to solve path planning problems where essential and discrete aspects of the environment are partially observable. This introduces a multi-modality, where the robot must be able to observe and infer the state of its environment. To tackle this problem, we introduce the Path-Tree Optimization (PTO) algorithm which plans a path-tree in belief-space. A path-tree is a tree-like motion with branching points where the robot receives an observation leading to a belief-state update. The robot takes different branches depending on the observation received. The algorithm has three main steps. First, a rapidly-exploring random graph (RRG) on the state space is grown. Second, the RRG is expanded to a belief-space graph by querying the observation model. In a third step, dynamic programming is performed on the belief-space graph to extract a path-tree. The resulting path-tree combines exploration with exploitation i.e. it balances the need for gaining knowledge about the environment with the need for reaching the goal. We demonstrate the algorithm capabilities on navigation and mobile manipulation tasks, and show its advantage over a baseline using a task and motion planning approach (TAMP) both in terms of optimality and runtime.
翻译:机器人通常需要解决路径规划问题, 环境的基本和离散方面是部分可观测到的。 这引入了多模式, 机器人必须能够观测和推断环境状况。 为了解决这个问题, 我们引入了路径优化算法( PTO ), 在信仰空间中规划路径树。 路径树是一种树形运动, 树形运动, 树形运动, 树形运动, 树形运动的机器人得到观测, 导致信仰状态更新。 机器人根据收到的观测结果, 取不同的分支。 算法有三个主要步骤。 首先, 机器人必须能够观察和推断其环境环境状况。 首先, 快速探测随机图( RRG ) 。 第二, RRG 通过查询观察模型, 扩展为信仰空间图。 第三步, 动态程序在信仰空间图上进行, 以提取路径树形。 由此形成的路径树形运动图将探索与开发结合起来, 也就是说, 将获取环境知识的需要与达到目标的需要相平衡。 我们展示了导航和移动操作操作能力, 并显示其在使用任务和运动规划的基线上的好处。