Autoencoder reconstructions are widely used for the task of unsupervised anomaly localization. Indeed, an autoencoder trained on normal data is expected to only be able to reconstruct normal features of the data, allowing the segmentation of anomalous pixels in an image via a simple comparison between the image and its autoencoder reconstruction. In practice however, local defects added to a normal image can deteriorate the whole reconstruction, making this segmentation challenging. To tackle the issue, we propose in this paper a new approach for projecting anomalous data on a autoencoder-learned normal data manifold, by using gradient descent on an energy derived from the autoencoder's loss function. This energy can be augmented with regularization terms that model priors on what constitutes the user-defined optimal projection. By iteratively updating the input of the autoencoder, we bypass the loss of high-frequency information caused by the autoencoder bottleneck. This allows to produce images of higher quality than classic reconstructions. Our method achieves state-of-the-art results on various anomaly localization datasets. It also shows promising results at an inpainting task on the CelebA dataset.
翻译:自动编码器重建被广泛用于不受监督的异常本地化任务。 事实上, 受过正常数据培训的自动编码器只能重建数据的正常特性, 通过简单比较图像和自动编码器重建, 将异常像素在图像中进行分解。 然而, 在实际中, 普通图像中添加的本地缺陷会恶化整个重建, 使这种分解具有挑战性。 为了解决这个问题, 我们在此文件中提出一种新的方法, 用来预测自动编码器获取的正常数据元件上的异常数据, 方法是在自动编码器丢失功能产生的能量上使用梯度脱落。 这种能量可以通过在构成用户定义的最佳投影的模型上使用正规化的术语来增加。 通过迭接更新自动编码器输入, 我们绕过由自动编码器瓶盖造成的高频信息损失。 这样可以生成质量高于经典重建的图像。 我们的方法可以在各种异常本地化数据集上取得状态的艺术结果 。 它还展示了Selpaimeb 任务中的数据结果 。