Timeliness and contextual accuracy of recommendations are increasingly important when delivering contemporary digital marketing experiences. Conventional recommender systems (RS) suggest relevant but time-invariant items to users by accounting for their past purchases. These recommendations only map to customers' general preferences rather than a customer's specific needs immediately preceding a purchase. In contrast, RSs that consider the order of transactions, purchases, or experiences to measure evolving preferences can offer more salient and effective recommendations to customers: Sequential RSs not only benefit from a better behavioral understanding of a user's current needs but also better predictive power. In this paper, we demonstrate and rank the effectiveness of a sequential recommendation system by utilizing a production dataset of over 2.7 million credit card transactions for 46K cardholders. The method first employs an autoencoder on raw transaction data and submits observed transaction encodings to a GRU-based sequential model. The sequential model produces a MAP@1 metric of 47% on the out-of-sample test set, in line with existing research. We also discuss implications for embedding real-time predictions using the sequential RS into Nexus, a scalable, low-latency, event-based digital experience architecture.
翻译:在提供当代数字营销经验时,建议的及时性和背景准确性越来越重要。常规推荐系统(RS)通过对过去购买情况进行核算,向用户提出相关但有时间变化的物品。这些建议只反映客户的一般偏好,而不是购买前的客户的具体需要。相比之下,考虑交易、购买顺序或衡量不断演变的偏好的经验的RS可以向客户提供更突出和有效的建议:序列RS不仅受益于对用户当前需要的更好行为理解,而且受益于更好的预测能力。在本文中,我们通过使用一个生产数据集,为46K卡持有者提供270多万张信用卡交易,来展示和排列顺序建议系统的效力。这种方法首先在原始交易数据上采用自动编码,并向基于GRU的顺序模型提交观察到的交易编码。序列模型根据现有研究,在抽样测试中生成了47%的MAP@1衡量标准。我们还讨论了使用连续的RS到Nexus,一个可缩放的数字结构,即可缩放的数字经验,实时预测的影响。