We study Frank-Wolfe algorithms - standard, pairwise, and away-steps - for efficient optimization of Dominant Set Clustering. We present a unified and computationally efficient framework to employ the different variants of Frank-Wolfe methods, and we investigate its effectiveness via several experimental studies. In addition, we provide explicit convergence rates for the algorithms in terms of the so-called Frank-Wolfe gap. The theoretical analysis has been specialized to Dominant Set Clustering and covers consistently the different variants.
翻译:我们研究弗兰克-沃夫算法-标准法、双向法和离轨法-以有效优化主宰集束。我们提出了一个统一和计算效率高的框架来运用弗兰克-沃夫方法的不同变体,我们通过几项实验研究来调查其有效性。此外,我们还从所谓的弗兰克-沃夫差距的角度为算法提供了明确的趋同率。理论分析是专门为主宰集束而专门设计的,并始终如一地涵盖了不同的变体。