Multi-agent market simulators usually require careful calibration to emulate real markets, which includes the number and the type of agents. Poorly calibrated simulators can lead to misleading conclusions, potentially causing severe loss when employed by investment banks, hedge funds, and traders to study and evaluate trading strategies. In this paper, we propose a world model simulator that accurately emulates a limit order book market -- it requires no agent calibration but rather learns the simulated market behavior directly from historical data. Traditional approaches fail short to learn and calibrate trader population, as historical labeled data with details on each individual trader strategy is not publicly available. Our approach proposes to learn a unique "world" agent from historical data. It is intended to emulate the overall trader population, without the need of making assumptions about individual market agent strategies. We implement our world agent simulator models as a Conditional Generative Adversarial Network (CGAN), as well as a mixture of parametric distributions, and we compare our models against previous work. Qualitatively and quantitatively, we show that the proposed approaches consistently outperform previous work, providing more realism and responsiveness.


翻译:多试剂市场模拟器通常需要仔细校准才能模仿真实市场,其中包括代理商的数量和类型。校准不当的模拟器可能导致误导性结论,在投资银行、对冲基金和贸易商使用来研究和评估贸易战略时可能导致严重损失。在本文中,我们提议了一个世界模型模拟器,精确地模仿限制定单书市场 -- -- 它不需要代理商校准,而是直接从历史数据中学习模拟市场行为。传统方法在学习和校准贸易商人口方面做得不够,因为历史标签数据与每个个体贸易商战略的细节都无法公开提供。我们的方法是从历史数据中学习一个独特的“世界”代理商。我们打算模仿整个贸易商人口,而不必对个别市场代理商战略作出假设。我们用我们的世界代理商模拟器模拟器模型作为有条件的Generation Aversarial 网络(CAN),以及一种参数分布的混合体,我们比较了我们以往的工作模式。从质量和数量上看,我们表明拟议的方法一贯地超越了以往的工作,提供了更真实的响应性。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
26+阅读 · 2019年3月5日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员