The ongoing replication crisis in science has increased interest in the methodology of replication studies. We propose a novel Bayesian analysis approach using power priors: The likelihood of the original study's data is raised to the power of $\alpha$, and then used as the prior distribution in the analysis of the replication data. Posterior distribution and Bayes factor hypothesis tests related to the power parameter $\alpha$ quantify the degree of compatibility between the original and replication study. Inferences for other parameters, such as effect sizes, dynamically borrow information from the original study. The degree of borrowing depends on the conflict between the two studies. The practical value of the approach is illustrated on data from three replication studies, and the connection to hierarchical modeling approaches explored. We generalize the known connection between normal power priors and normal hierarchical models for fixed parameters and show that normal power prior inferences with a beta prior on the power parameter $\alpha$ align with normal hierarchical model inferences using a generalized beta prior on the relative heterogeneity variance $I^2$. The connection illustrates that power prior modeling is unnatural from the perspective of hierarchical modeling since it corresponds to specifying priors on a relative rather than an absolute heterogeneity scale.
翻译:目前的科学复制危机提高了人们对复制研究方法的兴趣。我们建议采用新颖的Bayesian分析方法,使用权力先验法分析方法。我们建议采用新颖的Bayesian分析方法:原始研究数据的可能性被提升到1美元,然后作为复制数据分析的先前分配方式。与动力参数有关的Power Power分布和Bayes系数假设测试,以美元量化原始和复制研究的兼容程度。其他参数的推论,如效应大小,动态借用原始研究的信息。借款的程度取决于两项研究之间的冲突。该方法的实际价值在三个复制研究的数据中加以说明,并与所探讨的等级模型方法的关联。我们概括了以往正常权力与固定参数的正常等级模型之间的已知联系,并表明,在电源参数和复制研究之前的乙型参数的推论中,通常的功率与通常的等级模型推论相一致,在相对异性变的异性上,从先前的绝对等级模型的角度看,前位模型是非自然的。