The scale of the state space of discrete graphical models is crucial for model capacity in the era of deep learning. Existing dynamic programming (DP) based inference typically works with a small number of states (usually less than hundreds). In this work, we propose a family of randomized dynamic programming (RDP) algorithms for scaling structured models to tens of thousands of latent states. Our method is widely applicable to classical DP-based inference (partition, marginal, reparameterization, entropy, .etc) and different graph structures (chains, trees, and more general hypergraphs). It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly and learned with gradient-based optimizers. Our core technique is randomization, which is to restrict and reweight DP on a small selected subset of nodes, leading to computation reduction by orders of magnitudes. We further achieve low bias and variance with Rao-Blackwellization and importance sampling. Experiments on different inferences over different graphs demonstrate the accuracy and efficiency of our methods. Furthermore, when using RDP to train a scaled structured VAE, it outperforms baselines in terms of test likelihood and successfully prevents posterior collapse.


翻译:离散图形模型的状态空间规模对于深层次学习时代的模型能力至关重要。现有的动态编程(DP)依据推论通常与少数国家(通常不到几百个国家)一起工作。在这项工作中,我们提出一组随机的动态编程(RDP)算法,以将结构模型缩放到数万个潜伏状态。我们的方法广泛适用于传统的基于DP的推论(分割、边际、再分计、英特比、.etc)和不同的图形结构(链、树和较一般的超强),这也与自动区分兼容,因此可以与神经网络无缝地结合,并与基于梯度的优化器一起学习。我们的核心技术是随机化,即限制和重新加权一个小的节点组,导致按数量顺序进行削减。我们进一步在光度和重要性取样方面实现低偏差和差异。对不同图表的不同推论的实验显示了我们方法的准确性和效率。此外,在使用RDP来培训结构化VAE时,它成功地防止了结构的崩溃性基准。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
40+阅读 · 2020年2月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员