Sequential recommender systems have shown effective suggestions by capturing users' interest drift. There have been two groups of existing sequential models: user- and item-centric models. The user-centric models capture personalized interest drift based on each user's sequential consumption history, but do not explicitly consider whether users' interest in items sustains beyond the training time, i.e., interest sustainability. On the other hand, the item-centric models consider whether users' general interest sustains after the training time, but it is not personalized. In this work, we propose a recommender system taking advantages of the models in both categories. Our proposed model captures personalized interest sustainability, indicating whether each user's interest in items will sustain beyond the training time or not. We first formulate a task that requires to predict which items each user will consume in the recent period of the training time based on users' consumption history. We then propose simple yet effective schemes to augment users' sparse consumption history. Extensive experiments show that the proposed model outperforms 10 baseline models on 11 real-world datasets. The codes are available at https://github.com/dmhyun/PERIS.
翻译:序列建议系统通过捕捉用户的兴趣漂移, 显示了有效的建议。 有两组现有的连续模式: 用户和项目中心模式。 以用户为中心的模式根据每个用户的相继消费历史捕捉了个性化兴趣漂移, 但没有明确考虑用户对项目的兴趣是否超过培训时间, 即利息的可持续性。 另一方面, 以项目为中心的模式考虑用户的一般兴趣是否在培训时间之后持续, 但它不是个性化的。 在这项工作中, 我们提议了一个建议者系统, 利用两个类别的模型的优势。 我们提议的模型捕捉个性化利益可持续性, 表明每个用户对项目的兴趣是否在培训时间之后持续。 我们首先拟定了一项任务, 要求预测每个用户在近期的培训时间里, 根据用户的消费历史, 将消费哪些项目。 我们然后提出简单而有效的计划, 来增加用户的稀薄消费历史。 广泛的实验显示, 拟议的模型在11个真实世界数据集上的10个基线模型比10个基线模型要好。 代码可以在 https://github.com/dhyum/pun/PER.