Overfitting has long been considered a common issue to large neural network models in sequential recommendation. In our study, an interesting phenomenon is observed that overfitting is temporary. When the model scale is increased, the trend of the performance firstly ascends, then descends (i.e., overfitting) and finally ascends again, which is named as double ascent in this paper. We therefore raise an assumption that a considerably larger model will generalise better with a higher performance. In an extreme case to infinite-width, performance is expected to reach the limit of this specific structure. Unfortunately, it is impractical to directly build a huge model due to the limit of resources. In this paper, we propose the Overparameterised Recommender (OverRec), which utilises a recurrent neural tangent kernel (RNTK) as a similarity measurement for user sequences to successfully bypass the restriction of hardware for huge models. We further prove that the RNTK for the tied input-output embeddings in recommendation is the same as the RNTK for general untied input-output embeddings, which makes RNTK theoretically suitable for recommendation. Since the RNTK is analytically derived, OverRec does not require any training, avoiding physically building the huge model. Extensive experiments are conducted on four datasets, which verifies the state-of-the-art performance of OverRec.


翻译:长期以来,人们一直认为与大型神经网络模型相适应是一个常见的问题。在我们的研究中,一个有趣的现象是,超配是暂时的。当模型规模增加时,表现的倾向是首先上升,然后下降(即超装),最后再次上升,本文中将其命名为双倍上升。因此,我们提出一个假设,即一个大得多的模型将随着更高的性能而更好地概括。在无限宽度的极端情况下,预期性能将达到这一特定结构的极限。不幸的是,由于资源有限,直接建立一个巨大的模型是不切实际的。在本文件中,我们建议使用多分计建议器(OverRec),它使用一个经常性的神经切线内核(RNTK),作为用户序列的类似度量度测量,以成功绕过对巨型模型硬件的限制。我们进一步证明,在建议中捆绑的输入-输出嵌入的RNTK与RNTK相同, 用于一般不连续输入输入嵌入的RNTK是不切实际的,使得RNTK在理论上进行不适宜于任何巨型的测试。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月8日
Arxiv
15+阅读 · 2021年6月27日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员