Large vision-language models (VLMs) commonly process images at native or high resolution to remain effective across tasks. This inflates visual tokens ofter to 97-99% of total tokens, resulting in high compute and latency, even when low-resolution images would suffice. We introduce \emph{CARES}-a \textbf{C}ontext-\textbf{A}ware \textbf{R}esolution \textbf{S}elector, a lightweight preprocessing module that, given an image-query pair, predicts the \emph{minimal} sufficient input resolution. CARES uses a compact VLM (350M) to extract features and predict when a target pretrained VLM's response converges to its peak ability to answer correctly. Though trained as a discrete classifier over a set of optional resolutions, CARES interpolates continuous resolutions at inference for fine-grained control. Across five multimodal benchmarks spanning documents and natural images, as well as diverse target VLMs, CARES preserves task performance while reducing compute by up to 80%.
翻译:暂无翻译