The Hairy Ball Theorem states that every continuous tangent vector field on an even-dimensional sphere must have a zero. We prove that the associated computational problem of (a) computing an approximate zero is PPAD-complete, and (b) computing an exact zero is FIXP-hard. We also consider the Hairy Ball Theorem on toroidal instead of spherical domains and show that the approximate problem remains PPAD-complete. On a conceptual level, our PPAD-membership results are particularly interesting, because they heavily rely on the investigation of multiple-source variants of END-OF-LINE, the canonical PPAD-complete problem. Our results on these new END-OF-LINE variants are of independent interest and provide new tools for showing membership in PPAD. In particular, we use them to provide the first full proof of PPAD-completeness for the IMBALANCE problem defined by Beame et al. in 1998.
翻译:“海球理论”指出,在等维域上,每个连续相切矢量字段必须有一个零。我们证明相关的计算问题:(a) 计算大约零是PPAD的完整,和(b) 计算精确零是FIXP硬。我们还认为海球理论是非机器人化的,而不是球体域,并表明近似问题仍然是PPAD的完整。在概念层面,我们的PPAD成员结果特别有趣,因为它们严重依赖对“END-OF-LINE”的多种来源变体(Canonical PPAD-Complus问题)的调查。我们在这些新的“END-OF-LINE”变体上的结果是独立的,为显示PAD成员身份提供了新的工具。特别是,我们利用它们为Beame等人在1998年界定的IMBABANE问题提供PADAD-完整的第一个充分证据。