The profitable tour problem (PTP) is a well-known NP-hard routing problem searching for a tour visiting a subset of customers while maximizing profit as the difference between total revenue collected and traveling costs. PTP is known to be solvable in polynomial time when special structures of the underlying graph are considered. However, the computational complexity of the corresponding probabilistic generalizations is still an open issue in many cases. In this paper, we analyze the probabilistic PTP where customers are located on a tree and need, with a known probability, for a service provision at a predefined prize. The problem objective is to select a priori a subset of customers with whom to commit the service so to maximize the expected profit. We provide a polynomial time algorithm computing the optimal solution in $O(n^2)$, where $n$ is the number of nodes in the tree.


翻译:利润丰厚的旅游问题(PTP)是一个众所周知的NP-硬路线问题,在寻找参观一组客户的旅游时,将利润最大化作为总收入和旅行费用之间的差额。在考虑基本图的特殊结构时,PTP在多元时间内是可溶的。然而,在很多情况下,相应的概率一般化的计算复杂性仍然是一个未决问题。在本文中,我们分析了顾客位于一棵树上的概率性PTP,在预先确定的奖励中需要服务。问题的目标是选择一个先期的客户子集,与这些客户一起承诺提供服务,以尽量扩大预期利润。我们用$(n%2)计算最佳解决办法,用$(n%2)计算,其中美元是树上的节点数。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员