We provide a queueing-theoretic framework for job replication schemes based on the principle "\emph{replicate a job as soon as the system detects it as a \emph{straggler}}". This is called job \emph{speculation}. Recent works have analyzed {replication} on arrival, which we refer to as \emph{replication}. Replication is motivated by its implementation in Google's BigTable. However, systems such as Apache Spark and Hadoop MapReduce implement speculative job execution. The performance and optimization of speculative job execution is not well understood. To this end, we propose a queueing network model for load balancing where each server can speculate on the execution time of a job. Specifically, each job is initially assigned to a single server by a frontend dispatcher. Then, when its execution begins, the server sets a timeout. If the job completes before the timeout, it leaves the network, otherwise the job is terminated and relaunched or resumed at another server where it will complete. We provide a necessary and sufficient condition for the stability of speculative queueing networks with heterogeneous servers, general job sizes and scheduling disciplines. We find that speculation can increase the stability region of the network when compared with standard load balancing models and replication schemes. We provide general conditions under which timeouts increase the size of the stability region and derive a formula for the optimal speculation time, i.e., the timeout that minimizes the load induced through speculation. We compare speculation with redundant-$d$ and redundant-to-idle-queue-$d$ rules under an $S\& X$ model. For light loaded systems, redundancy schemes provide better response times. However, for moderate to heavy loadings, redundancy schemes can lose capacity and have markedly worse response times when compared with a speculative scheme.


翻译:我们根据“\ emph{strggler} ” 的原则,为职位复制计划提供一个队列理论框架。 这叫做任务 \ emph{ sperggler} 。 最近的工作分析到抵达时的{recoms}, 我们称之为 emph{ recredition} 。 复制的动力在于谷歌的大表。 但是, 诸如 Apache Spark 和 Hadoop MapReduce 等系统, 一旦系统检测到一个任务执行时间, 就会实施投机性的工作执行。 投机性工作执行的性能和优化并没有得到很好的理解。 为此, 我们建议为每个服务器的负载平衡建立一个队列模式模式模式, 从而可以对执行任务的时间进行猜测。 具体地, 每个任务最初由前端调度员指派给一个单一的服务器。 然后, 当任务完成时, 服务器会设置一个超时, 如果任务完成超时, 它会失去这个模式, 工作会结束, 或者重新启用或恢复到另一个服务器的折旧性能完成的。 我们提供了一个必要的和足够的条件 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员