Accurate forecasting of extreme values in time series is critical due to the significant impact of extreme events on human and natural systems. This paper presents DeepExtrema, a novel framework that combines a deep neural network (DNN) with generalized extreme value (GEV) distribution to forecast the block maximum value of a time series. Implementing such a network is a challenge as the framework must preserve the inter-dependent constraints among the GEV model parameters even when the DNN is initialized. We describe our approach to address this challenge and present an architecture that enables both conditional mean and quantile prediction of the block maxima. The extensive experiments performed on both real-world and synthetic data demonstrated the superiority of DeepExtrema compared to other baseline methods.
翻译:由于极端事件对人类和自然系统产生的重大影响,对时间序列中极端值的准确预测至关重要,本文件介绍了DeepExtrema,这是一个将具有普遍极端值的深神经网络(DNN)分布结合起来,以预测时间序列的区块最大值的新框架。实施这样一个网络是一项挑战,因为即使启动DNN,该框架也必须保持GEV模型参数之间互为关联的制约。我们描述了我们应对这一挑战的方法,并提出了一个既能有条件地预测区块标准又能量化地预测区块标准的结构。在现实世界和合成数据上进行的广泛实验表明,DeepExtrema与其他基线方法相比具有优势。