Diversity maximization is a fundamental problem with wide applications in data summarization, web search, and recommender systems. Given a set $X$ of $n$ elements, it asks to select a subset $S$ of $k \ll n$ elements with maximum \emph{diversity}, as quantified by the dissimilarities among the elements in $S$. In this paper, we focus on the diversity maximization problem with fairness constraints in the streaming setting. Specifically, we consider the max-min diversity objective, which selects a subset $S$ that maximizes the minimum distance (dissimilarity) between any pair of distinct elements within it. Assuming that the set $X$ is partitioned into $m$ disjoint groups by some sensitive attribute, e.g., sex or race, ensuring \emph{fairness} requires that the selected subset $S$ contains $k_i$ elements from each group $i \in [1,m]$. A streaming algorithm should process $X$ sequentially in one pass and return a subset with maximum \emph{diversity} while guaranteeing the fairness constraint. Although diversity maximization has been extensively studied, the only known algorithms that can work with the max-min diversity objective and fairness constraints are very inefficient for data streams. Since diversity maximization is NP-hard in general, we propose two approximation algorithms for fair diversity maximization in data streams, the first of which is $\frac{1-\varepsilon}{4}$-approximate and specific for $m=2$, where $\varepsilon \in (0,1)$, and the second of which achieves a $\frac{1-\varepsilon}{3m+2}$-approximation for an arbitrary $m$. Experimental results on real-world and synthetic datasets show that both algorithms provide solutions of comparable quality to the state-of-the-art algorithms while running several orders of magnitude faster in the streaming setting.


翻译:多样性最大化是数据总和、网络搜索和推荐系统中广泛应用的一个根本性问题。 在设定的美元值中, 3xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Adapting $k$-means algorithms for outliers
Arxiv
0+阅读 · 2022年9月23日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员