Seasonal time series Forecasting remains a challenging problem due to the long-term dependency from seasonality. In this paper, we propose a two-stage framework to forecast univariate seasonal time series. The first stage explicitly learns the long-range time series structure in a time window beyond the forecast horizon. By incorporating the learned long-range structure, the second stage can enhance the prediction accuracy in the forecast horizon. In both stages, we integrate the auto-regressive model with neural networks to capture both linear and non-linear characteristics in time series. Our framework achieves state-of-the-art performance on M4 Competition Hourly datasets. In particular, we show that incorporating the intermediate results generated in the first stage to existing forecast models can effectively enhance their prediction performance.
翻译:由于季节性的长期依赖性,预测季节性预测仍然是一个具有挑战性的问题。 在本文中,我们提出了一个预测单季节性时间序列的两阶段框架。 第一阶段明确学习预测范围以外时间窗口的长距离时间序列结构。 通过纳入所学长距离结构, 第二阶段可以提高预测地平线的预测准确性。 在这两个阶段, 我们将自动递减模型与神经网络结合起来, 在时间序列中捕捉线性和非线性特征。 我们的框架在 M4 竞赛时空数据集上取得了最先进的性能。 特别是, 我们显示, 将第一阶段产生的中间结果纳入现有预测模型可以有效地提高预测性能 。