In several disciplines it is common to find time series measured at irregular observational times. In particular, in astronomy there are a large number of surveys that gather information over irregular time gaps and in more than one passband. Some examples are Pan-STARRS, ZTF and also the LSST. However, current commonly used time series models that estimate the time dependency in astronomical light curves consider the information of each band separately (e.g, CIAR, IAR and CARMA models) disregarding the dependency that might exist between different passbands. In this paper we propose a novel bivariate model for irregularly sampled time series, called the bivariate irregular autoregressive (BIAR) model. The BIAR model assumes an autoregressive structure on each time series, it is stationary, and it allows to estimate the autocorrelation, the cross-correlation and the contemporary correlation between two unequally spaced time series. We implemented the BIAR model on light curves, in the g and r bands, obtained from the ZTF alerts processed by the ALeRCE broker. We show that if the light curves of the two bands are highly correlated, the model has more accurate forecast and prediction using the bivariate model than a similar method that uses only univariate information. Further, the estimated parameters of the BIAR are useful to characterize LongPeriod Variable Stars and to distinguish between classes of stochastic objects, providing promising features that can be used for classification purposes


翻译:在几个学科中,常见的做法是在不规则的观测时间里找到时间序列。特别是在天文学中,有大量调查在不规则的时间间隔和不止一个传感带中收集信息,例如Pan-STARRS、ZTF和LSST。不过,目前常用的时间序列模型估计天文光曲线的时间依赖性,这些模型可以分别考虑每个波段的信息(例如,CIAR、IAR和CARMA模型),而忽略不同传感带之间可能存在的依赖关系。在本文中,我们为不规则抽样的时间序列提出了一个新的双变量模型,称为双变量不规则自动递增(BBAR)模型。BIAR模型在每一时间序列中假定自动递增结构。然而,目前常用的时间序列模型是固定的,可以估计两个不均匀的时间序列之间的信息(例如,CIAR模型、IAR和CAR),我们在从 ZTFSLER处理的序列中获取的新的双曲线模型,称为双曲线递递递递(BBAR),我们用高曲线的预测方法来更精确地预测,如果使用BB级的曲线,那么,那么,那么,则使用BIFloral-ro ro ro ro ro ro roid ro ro ro ro ro ro ro ro ro ro ro ro ro roisal be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be laisal bes lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
32+阅读 · 2021年6月12日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
152+阅读 · 2020年8月27日
Gartner:2020年十大战略性技术趋势, 47页pdf
专知会员服务
78+阅读 · 2020年3月10日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年11月5日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月15日
Arxiv
0+阅读 · 2021年6月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年11月5日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员