In several disciplines it is common to find time series measured at irregular observational times. In particular, in astronomy there are a large number of surveys that gather information over irregular time gaps and in more than one passband. Some examples are Pan-STARRS, ZTF and also the LSST. However, current commonly used time series models that estimate the time dependency in astronomical light curves consider the information of each band separately (e.g, CIAR, IAR and CARMA models) disregarding the dependency that might exist between different passbands. In this paper we propose a novel bivariate model for irregularly sampled time series, called the bivariate irregular autoregressive (BIAR) model. The BIAR model assumes an autoregressive structure on each time series, it is stationary, and it allows to estimate the autocorrelation, the cross-correlation and the contemporary correlation between two unequally spaced time series. We implemented the BIAR model on light curves, in the g and r bands, obtained from the ZTF alerts processed by the ALeRCE broker. We show that if the light curves of the two bands are highly correlated, the model has more accurate forecast and prediction using the bivariate model than a similar method that uses only univariate information. Further, the estimated parameters of the BIAR are useful to characterize LongPeriod Variable Stars and to distinguish between classes of stochastic objects, providing promising features that can be used for classification purposes
翻译:在几个学科中,常见的做法是在不规则的观测时间里找到时间序列。特别是在天文学中,有大量调查在不规则的时间间隔和不止一个传感带中收集信息,例如Pan-STARRS、ZTF和LSST。不过,目前常用的时间序列模型估计天文光曲线的时间依赖性,这些模型可以分别考虑每个波段的信息(例如,CIAR、IAR和CARMA模型),而忽略不同传感带之间可能存在的依赖关系。在本文中,我们为不规则抽样的时间序列提出了一个新的双变量模型,称为双变量不规则自动递增(BBAR)模型。BIAR模型在每一时间序列中假定自动递增结构。然而,目前常用的时间序列模型是固定的,可以估计两个不均匀的时间序列之间的信息(例如,CIAR模型、IAR和CAR),我们在从 ZTFSLER处理的序列中获取的新的双曲线模型,称为双曲线递递递递(BBAR),我们用高曲线的预测方法来更精确地预测,如果使用BB级的曲线,那么,那么,那么,则使用BIFloral-ro ro ro ro ro ro roid ro ro ro ro ro ro ro ro ro ro ro ro ro roisal be be be be be be be be be be be be be be be be be be be be be be be be be be be be be be laisal bes lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad lad