In an intelligent transportation system, the key problem of traffic forecasting is how to extract the periodic temporal dependencies and complex spatial correlation. Current state-of-the-art methods for traffic flow forecasting are based on graph architectures and sequence learning models, but they do not fully exploit spatial-temporal dynamic information in the traffic system. Specifically, the temporal dependence of the short-range is diluted by recurrent neural networks, and the existing sequence model ignores local spatial information because the convolution operation uses global average pooling. Besides, there will be some traffic accidents during the transitions of objects causing congestion in the real world that trigger increased prediction deviation. To overcome these challenges, we propose the Spatial-Temporal Conv-sequence Learning (STCL), in which a focused temporal block uses unidirectional convolution to effectively capture short-term periodic temporal dependence, and a spatial-temporal fusion module is able to extract the dependencies of both interactions and decrease the feature dimensions. Moreover, the accidents features impact on local traffic congestion, and position encoding is employed to detect anomalies in complex traffic situations. We conduct a large number of experiments on real-world tasks and verify the effectiveness of our proposed method.
翻译:在智能运输系统中,交通预报的关键问题是如何提取周期性时间依赖性和复杂的空间相关关系。目前的交通流量预测最新方法以图表结构和序列学习模型为基础,但没有充分利用交通系统中的空间时空动态信息。具体地说,短距离的时依赖性被经常性神经网络冲淡,而现有的时间序列模型忽视了当地空间信息,因为卷发操作使用全球平均集合。此外,在现实世界造成拥堵的物体过渡期间,将出现一些交通事故,从而引发预测偏差。为了克服这些挑战,我们提议采用空间-时空会后学习(STCL),其中重点的时区利用单向演动来有效捕捉到短期周期性时间依赖性,空间时空聚变模块能够解出相互作用和减少特征层面的依赖性。此外,对当地交通拥堵的事故特征将造成一些交通事故,并使用位置编码来探测复杂交通状况中的异常现象。我们进行了大量的实验,以核实拟议的方法的有效性。我们用大量的时间块对现实世界进行实验。