The elimination distance to some target graph property P is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the problem's fixed-parameter tractability by identifying sufficient and necessary conditions on the structure of prefixes of first-order logic formulas. Our main result is the following meta-theorem: for every graph property P expressible by a first order-logic formula \phi\in \Sigma_3, that is, of the form \phi=\exists x_1\exists x_2\cdots \exists x_r \forall y_1\forall y_2\cdots \forall y_s \exists z_1\exists z_2\cdots \exists z_t \psi, where \psi is a quantifier-free first-order formula, checking whether the elimination distance of a graph to P does not exceed k, is fixed-parameter tractable parameterized by k. Properties of graphs expressible by formulas from \Sigma_3 include being of bounded degree, excluding a forbidden subgraph, or containing a bounded dominating set. We complement this theorem by showing that such a general statement does not hold for formulas with even slightly more expressive prefix structure: there are formulas \phi\in \Pi_3, for which computing elimination distance is W[2]-hard.
翻译:某些目标图形属性 P 的消除距离是 Bulian 和 Dawar 引入的普通图形修改参数。 我们开始研究消除距离, 以一阶逻辑显示的图形属性。 我们通过确定第一个顺序逻辑公式前缀结构的充足和必要条件来划定问题所在的固定参数可移动性。 我们的主要结果为以下元理论: 对于每个图形属性, 以第一个排序- log公式\phi\ in\Sigma_3 表示, 即以第一个排序公式\phi=exi= quite- fal- 3 表示, 即以\phi_ exmissions x_1\ expents x_2\ dots\ dexists\ expreflegals x_r\ dr\ forall y_ 1\ forall y\\\\\\\\\\\\\\\\cddgots\\\\\\\ mais a main commaine destrain destrain destrain destrate destress a glas deal destration a main a main decreal decreal demodestrate destret.