The empirical success of deep learning is often attributed to SGD's mysterious ability to avoid sharp local minima in the loss landscape, as sharp minima are known to lead to poor generalization. Recently, empirical evidence of heavy-tailed gradient noise was reported in many deep learning tasks, and it was shown in \c{S}im\c{s}ekli (2019a,b) that SGD can escape sharp local minima under the presence of such heavy-tailed gradient noise, providing a partial solution to the mystery. In this work, we analyze a popular variant of SGD where gradients are truncated above a fixed threshold. We show that it achieves a stronger notion of avoiding sharp minima: it can effectively eliminate sharp local minima entirely from its training trajectory. We characterize the dynamics of truncated SGD driven by heavy-tailed noises. First, we show that the truncation threshold and width of the attraction field dictate the order of the first exit time from the associated local minimum. Moreover, when the objective function satisfies appropriate structural conditions, we prove that as the learning rate decreases, the dynamics of heavy-tailed truncated SGD closely resemble those of a continuous-time Markov chain that never visits any sharp minima. Real data experiments on deep learning confirm our theoretical prediction that heavy-tailed SGD with gradient clipping finds a "flatter" local minima and achieves better generalization.


翻译:深层学习的实证成功往往归功于SGD避免在损失场景中出现尖锐的当地迷你现象的神秘能力,因为人们知道尖锐的迷你现象会导致不全面化。最近,许多深层学习任务中报告了重尾梯度噪音的实证证据,许多深层学习任务中也报告了这种实证证据,我们在\c{S}Sim\c{s}ekli (2019a,b)中显示,SGD在如此密集的梯度噪音下可以摆脱尖锐的当地迷你现象,为神秘性提供了部分解决办法。在这项工作中,我们分析了SGD的流行变种,梯度在固定阈值之上脱落。我们表明,它实现了避免尖锐迷你的更强烈概念:它能够有效地完全从培训轨迹中消除尖锐的当地迷你度噪音。我们从重尾部噪音驱动的SGDDGD运动的动态。首先,我们表明,吸引场的临界门槛和宽度要求第一个退出时间的秩序,从相关的当地最低限值。此外,当客观功能满足适当的结构条件时,我们证明,随着学习速度下降速度下降速度下降,我们不断的SGMGDLA级的动力会得到更精确的精确的循环。

0
下载
关闭预览

相关内容

【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
149+阅读 · 2021年5月9日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2021年7月1日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员