We propose a new method for multivariate response regressions where the elements of the response vector can be of mixed types, for example some continuous and some discrete. Our method is based on a model which assumes the observable mixed-type response vector is connected to a latent multivariate normal response linear regression through a link function. We explore the properties of this model and show its parameters are identifiable under reasonable conditions. We propose an algorithm for approximate maximum likelihood estimation that works "off-the-shelf" with many different combinations of response types, and which scales well in the dimension of the response vector. Our method typically gives better predictions and parameter estimates than fitting separate models for the different response types and allows for approximate likelihood ratio testing of relevant hypotheses such as independence of responses. The usefulness of the proposed method is illustrated using simulations and through three data examples.
翻译:我们提出了一种新的多变反应回归法,其中应变矢量的元素可以是混合型的,例如某些连续的和某些离散的。我们的方法基于一种模型,该模型假定可观测到的混合型响应矢量通过链接函数与潜伏的多变正常反应线性回归相连接。我们探索了该模型的特性,并展示了在合理条件下可以识别的参数。我们提出了一种算法,用于估计“现成”与许多不同响应类型组合的“现成”的大致最大可能性,以及反应矢量的高度尺度。我们的方法通常提供更好的预测和参数估计,而不是为不同的应变类型设计单独的模型,并允许对相关假设,如反应的独立性,进行大概概率比率测试。我们用模拟和三个数据实例来说明拟议方法的效用。