In order to protect vulnerable road users (VRUs), such as pedestrians or cyclists, it is essential that intelligent transportation systems (ITS) accurately identify them. Therefore, datasets used to train perception models of ITS must contain a significant number of vulnerable road users. However, data protection regulations require that individuals are anonymized in such datasets. In this work, we introduce a novel deep learning-based pipeline for face anonymization in the context of ITS. In contrast to related methods, we do not use generative adversarial networks (GANs) but build upon recent advances in diffusion models. We propose a two-stage method, which contains a face detection model followed by a latent diffusion model to generate realistic face in-paintings. To demonstrate the versatility of anonymized images, we train segmentation methods on anonymized data and evaluate them on non-anonymized data. Our experiment reveal that our pipeline is better suited to anonymize data for segmentation than naive methods and performes comparably with recent GAN-based methods. Moreover, face detectors achieve higher mAP scores for faces anonymized by our method compared to naive or recent GAN-based methods.
翻译:为保护行人或骑自行车等脆弱的道路使用者(VRUs),智能运输系统(ITS)必须准确识别这些使用者,因此,用于培训ITS感知模型的数据集必须包含大量脆弱的道路使用者,然而,数据保护条例要求个人在这类数据集中匿名;在这项工作中,我们引入了一种新的深层次的基于学习的管道,用于在ITS中进行匿名化。与相关方法相比,我们不使用基因对抗网络(GANs),而是利用传播模型的最新进展。我们提出了两阶段方法,其中包括一个面部探测模型,以潜在的扩散模型为后继,以产生现实的面部。为了展示匿名图像的多功能,我们对匿名数据进行了分解方法培训,并评估非匿名数据。我们的实验表明,我们的管道比天性方法更适合匿名分解数据,并且与最近GAN方法相仿。此外,我们面对的最近以天性方法的高级MAP分级方法,通过对面的天性方法进行了更高的比例。