Vision Transformer (ViT) has become one of the most popular neural architectures due to its great scalability, computational efficiency, and compelling performance in many vision tasks. However, ViT has shown inferior performance to Convolutional Neural Network (CNN) on medical tasks due to its data-hungry nature and the lack of annotated medical data. In this paper, we pre-train ViTs on 266,340 chest X-rays using Masked Autoencoders (MAE) which reconstruct missing pixels from a small part of each image. For comparison, CNNs are also pre-trained on the same 266,340 X-rays using advanced self-supervised methods (e.g., MoCo v2). The results show that our pre-trained ViT performs comparably (sometimes better) to the state-of-the-art CNN (DenseNet-121) for multi-label thorax disease classification. This performance is attributed to the strong recipes extracted from our empirical studies for pre-training and fine-tuning ViT. The pre-training recipe signifies that medical reconstruction requires a much smaller proportion of an image (10% vs. 25%) and a more moderate random resized crop range (0.5~1.0 vs. 0.2~1.0) compared with natural imaging. Furthermore, we remark that in-domain transfer learning is preferred whenever possible. The fine-tuning recipe discloses that layer-wise LR decay, RandAug magnitude, and DropPath rate are significant factors to consider. We hope that this study can direct future research on the application of Transformers to a larger variety of medical imaging tasks.
翻译:视觉变异器( VIT) 已经成为最受欢迎的神经结构之一, 因为它具有巨大的可缩缩缩性、 计算效率以及许多视觉任务中令人惊叹的性能。 然而, VIT 显示, 由于数据饥饿性质和缺少附加说明的医疗数据, 其医疗任务的表现低于Convolucial神经网络(CNN ) 。 在本文中, 我们使用蒙面自动读数仪(MAE)在266, 340胸X光上对VIT进行266, 340胸透射前培训, 重建了每个图像中一小部分缺失的像素。 相比之下, CNN还利用先进的自我监督方法(例如MOCo v2) 对相同的266, 340 X光进行了预先训练。 然而, 我们经过预先训练的VIT 进行了同样的精度变压性变压性变压性分析, 医学变压性变压性变压式的RDVT 。 医学变压性变压性变压式演算法( 10 % ) 和正压性变压性演算法的RBILILILILI) 的演算法研究需要一个更小比例。 。 我们的更小的DNA变压性变压制成像学研究, 和更小的更小的变压制成型研究需要一个比例。