Inductive logic programming is a form of machine learning based on mathematical logic that generates logic programs from given examples and background knowledge. In this project, we extend the Popper ILP system to make use of multi-task learning. We implement the state-of-the-art approach and several new strategies to improve search performance. Furthermore, we introduce constraint preservation, a technique that improves overall performance for all approaches. Constraint preservation allows the system to transfer knowledge between updates on the background knowledge set. Consequently, we reduce the amount of repeated work performed by the system. Additionally, constraint preservation allows us to transition from the current state-of-the-art iterative deepening search approach to a more efficient breadth first search approach. Finally, we experiment with curriculum learning techniques and show their potential benefit to the field.
翻译:感性逻辑编程是一种基于数学逻辑的机学学习形式,它从特定实例和背景知识中产生逻辑程序。在这个项目中,我们扩展了波普人 ILP 系统,以便利用多任务学习。我们实施了最先进的方法和若干新的战略来改进搜索性能。此外,我们引入了节制保护技术,这一技术可以提高所有方法的总体绩效。严格保存使系统能够在背景知识集更新之间转让知识。因此,我们减少了系统重复完成的工作数量。此外,限制保护使我们能够从目前最先进的迭接深度搜索方法过渡到更高效的第一次搜索方法。最后,我们实验了课程学习技术,并展示了它们对于实地的潜在好处。