Jamdani is the strikingly patterned textile heritage of Bangladesh. The exclusive geometric motifs woven on the fabric are the most attractive part of this craftsmanship having a remarkable influence on textile and fine art. In this paper, we have developed a technique based on the Generative Adversarial Network that can learn to generate entirely new Jamdani patterns from a collection of Jamdani motifs that we assembled, the newly formed motifs can mimic the appearance of the original designs. Users can input the skeleton of a desired pattern in terms of rough strokes and our system finalizes the input by generating the complete motif which follows the geometric structure of real Jamdani ones. To serve this purpose, we collected and preprocessed a dataset containing a large number of Jamdani motifs images from authentic sources via fieldwork and applied a state-of-the-art method called pix2pix to it. To the best of our knowledge, this dataset is currently the only available dataset of Jamdani motifs in digital format for computer vision research. Our experimental results of the pix2pix model on this dataset show satisfactory outputs of computer-generated images of Jamdani motifs and we believe that our work will open a new avenue for further research.
翻译:贾马达尼是孟加拉国典型的纺织遗产。 织物上的排他性几何模型是这一工艺工艺中最有吸引力的部分,对纺织和美美艺术具有显著影响。 在本文中,我们开发了一种基于创形反versarial网络的技术,可以学习从我们组装的贾马达尼模型集中产生全新的贾马尼模型,新形成的模型可以模仿原始设计的外观。 用户可以将理想模式的骨架输入粗略划线, 而我们的系统通过生成完整的模型来完成输入过程,它遵循的是真实的贾马尼模型的几何结构。为了达到这个目的,我们收集并预处理了一个数据集,其中包含大量来自真实来源的贾马达尼模型图象,并应用了一种叫作Pix2pix的最先进的方法。 据我们所知, 这个数据集是目前唯一可用在计算机视觉研究中以数字格式输入的贾马达尼模型的数据集。 我们的实验结果将显示我们最新的计算机模型模型的正确性模型, 将显示我们新的模型的模型。