As machine learning models become increasingly larger, trained weakly supervised on large, possibly uncurated data sets, it becomes increasingly important to establish mechanisms for inspecting, interacting, and revising models to mitigate learning shortcuts and guarantee their learned knowledge is aligned with human knowledge. The recently proposed XIL framework was developed for this purpose, and several such methods have been introduced, each with individual motivations and methodological details. In this work, we provide a unification of various XIL methods into a single typology by establishing a common set of basic modules. In doing so, we pave the way for a principled comparison of existing, but, importantly, also future XIL approaches. In addition, we discuss existing and introduce novel measures and benchmarks for evaluating the overall abilities of a XIL method. Given this extensive toolbox, including our typology, measures, and benchmarks, we finally compare several recent XIL methods methodologically and quantitatively. In our evaluations, all methods prove to revise a model successfully. However, we found remarkable differences in individual benchmark tasks, revealing valuable application-relevant aspects for integrating these benchmarks in developing future methods.
翻译:随着机器学习模式日益扩大,对大型、可能未完成的数据集的监管薄弱,经过培训的机器学习模式日益扩大,对大型、可能未完成的数据集进行薄弱监督,建立检查、互动和修订模型的机制,以减少学习捷径,保证其知识与人类知识相适应,越来越重要。最近提出的XIL框架是为此目的制定的,并采用了几种方法,每种方法都有各自的动机和方法细节。在这项工作中,我们通过建立一套共同的基本模块,将XIL的各种方法统一成一个单一类型。这样做,我们为对现有、但重要的是未来XIL方法进行有原则的比较铺平了道路。此外,我们还讨论和采用新的措施和基准,以评价XIL方法的总体能力。鉴于这一广泛的工具箱,包括我们的类型、措施和基准,我们最后从方法和数量上比较了最近若干XIL方法。我们的评价证明,所有方法都成功地修订了一个模型。但我们发现,在单个基准任务中发现了显著的不同之处,我们发现在制定未来方法时,在应用上发现这些基准方面很有价值。