Generalizing the fluid dynamical optimal mass transport (OMT) approach of Benamou and Brenier, regularized optimal mass transport (rOMT) formulates a transport problem from an initial mass configuration to another with the optimality defined by the kinetic energy, but subject to an advection-diffusion constraint equation. Both rOMT and the Benamou and Brenier's formulation require the total initial and final mass to be equal; mass is preserved during the entire transport process. However, for many applications, e.g., in dynamic image tracking, this constraint is rarely if ever satisfied. Here we introduce an unbalanced version of rOMT to remove this constraint together with a detailed numerical solution procedure and applications to dynamic image tracking in the brain.
翻译:将Benamou和Brenier的流体动态最佳大众运输(OMT)方法普遍化,正规化的最佳大众运输(rOMT)从初始质量配置形成一个运输问题,从初始质量配置到另一种由动能确定的最佳性,但受对流扩散制约方程式的限制。ROMT和Benamou和Brenier的配方要求初始和最终总质量相等;在整个运输过程中保留质量。然而,对于许多应用,例如动态图像跟踪,这种限制即使得到满足,也很少得到满足。在这里,我们引入一种不平衡的 ROMT来消除这一限制,同时引入详细的数字解决方案程序以及大脑动态图像跟踪应用。