Functional electrical stimulation (FES) has been increasingly integrated with other rehabilitation devices, including robots. FES cycling is one of the common FES applications in rehabilitation, which is performed by stimulating leg muscles in a certain pattern. The appropriate pattern varies across individuals and requires manual tuning which can be time-consuming and challenging for the individual user. Here, we present an AI-based method for finding the patterns, which requires no extra hardware or sensors. Our method has two phases, starting with finding model-based patterns using reinforcement learning and detailed musculoskeletal models. The models, built using open-source software, can be customised through our automated script and can be therefore used by non-technical individuals without extra cost. Next, our method fine-tunes the pattern using real cycling data. We test our both in simulation and experimentally on a stationary tricycle. In the simulation test, our method can robustly deliver model-based patterns for different cycling configurations. The experimental evaluation shows that our method can find a model-based pattern that induces higher cycling speed than an EMG-based pattern. By using just 100 seconds of cycling data, our method can deliver a fine-tuned pattern that gives better cycling performance. Beyond FES cycling, this work is a showcase, displaying the feasibility and potential of human-in-the-loop AI in real-world rehabilitation.
翻译:功能性电刺激 (FES) 被越来越多地应用于其他康复设备中,包括机器人。FES循环是康复中常见的FES应用之一,它通过以一定的模式刺激腿部肌肉来实现。适当的模式因个体而异,需要手动调整,这可能耗时,并且对个人用户来说具有挑战性。在本研究中,我们提出了一种基于人工智能的方法来查找模式,无需额外的硬件或传感器。我们的方法有两个阶段,首先使用强化学习以及详细的肌肉骨骼模型进行基于模型的模式查找。使用开源软件构建的模型可以通过我们的自动化脚本进行定制,因此可以由非技术人员使用,无需额外费用。接下来,我们的方法使用真实的骑行数据微调模式。我们在静止三轮自行车上进行了仿真和实验性测试。在仿真测试中,我们的方法可以为不同的骑行配置稳健地提供基于模型的模式。实验性评估表明,我们的方法可以找到一个基于模型的模式,比基于肌电图的模式引起更高的骑行速度。仅使用100秒的骑行数据,我们的方法就可以提供一个优化的模式,从而实现更好的骑行表现。超出 FES循环本身,本研究是一个展示人机交互 AI 在真实康复中可行性和潜力的案例。