False discovery rate (FDR) is a common way to control the number of false discoveries in multiple testing. In this paper, the focus is on functional test statistics, which are discretized into $m$ highly correlated hypotheses. The aim is to find, based on resampling principles, a graphical envelope that detects the outcomes of all individual hypotheses by a simple rule: the hypothesis is rejected if and only if the empirical test statistic is outside of the envelope. Such an envelope offers a straightforward interpretation of the test results similarly as in global envelope testing recently developed with controlling the family-wise error rate. Two different adaptive single threshold procedures are developed to fulfill this aim. The new methods are illustrated by three real data examples.
翻译:假发现率( FDR) 是控制多次测试中虚假发现数量的常见方法。 在本文中, 重点是功能性测试统计, 这些数据被分解为百万美元高度关联的假设。 目的是根据重采原则找到一个图形信封, 用简单规则检测所有个人假设的结果: 假设被否决, 前提是实验性测试统计数据不在信封内。 这种信封可以直接解释测试结果, 类似于最近通过控制家庭错误率而开发的全球信封测试。 为了达到这个目的, 开发了两种不同的适应性单一阈值程序。 三个真实数据实例说明了新的方法 。