Over the past decade, machine learning revolutionized vision-based quality assessment for which convolutional neural networks (CNNs) have now become the standard. In this paper, we consider a potential next step in this development and describe a quanvolutional neural network (QNN) algorithm that efficiently maps classical image data to quantum states and allows for reliable image analysis. We practically demonstrate how to leverage quantum devices in computer vision and how to introduce quantum convolutions into classical CNNs. Dealing with a real world use case in industrial quality control, we implement our hybrid QNN model within the PennyLane framework and empirically observe it to achieve better predictions using much fewer training data than classical CNNs. In other words, we empirically observe a genuine quantum advantage for an industrial application where the advantage is due to superior data encoding.
翻译:在过去的十年中,机器学习使基于愿景的质量评估发生了革命性的变化,而这种评估现在已成为进化神经网络(CNNs)的标准。在本文件中,我们考虑这一发展下一步的潜在步骤,并描述一个四进制神经网络算法,该算法有效地将古典图像数据映射到量子状态,并允许进行可靠的图像分析。我们实际上展示了如何在计算机视觉中利用量子设备以及如何将量子变异引入古典CNN。在工业质量控制中处理一个真正的世界使用案例,我们在PennyLane框架内执行我们的混合QNN模型,并用经验观察来利用比古典CNN少得多的培训数据实现更好的预测。换句话说,我们从经验上观察了工业应用的真正量子优势,因为其优势在于高数据编码。