In malware behavioral analysis, the list of accessed and created files very often indicates whether the examined file is malicious or benign. However, malware authors are trying to avoid detection by generating random filenames and/or modifying used filenames with new versions of the malware. These changes represent real-world adversarial examples. The goal of this work is to generate realistic adversarial examples and improve the classifier's robustness against these attacks. Our approach learns latent representations of input strings in an unsupervised fashion and uses gradient-based adversarial attack methods in the latent domain to generate adversarial examples in the input domain. We use these examples to improve the classifier's robustness by training on the generated adversarial set of strings. Compared to classifiers trained only on perturbed latent vectors, our approach produces classifiers that are significantly more robust without a large trade-off in standard accuracy.


翻译:在恶意软件行为分析中,访问和创建的文档列表往往显示被检查的文件是否恶意或无害。 但是, 恶意软件作者试图通过生成随机文件名和(或)用新版本的恶意软件修改旧文件名来避免被检测。 这些变化代表了真实世界的对抗性实例。 这项工作的目标是生成现实的对抗性实例,提高分类者对这些攻击的稳健性。 我们的方法是以不受监督的方式学习输入字符串的潜在表达方式,并在潜在域中使用基于梯度的对抗性攻击方法来生成输入域内的对抗性实例。 我们利用这些实例来通过对生成的对抗性字符串进行培训来提高分类者的稳健性。 与只对潜伏的矢量进行培训的分类者相比, 我们的方法产生在标准精确度上没有大宗交易的分类者更加稳健。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
人工智能顶会WSDM2021优秀论文奖(Best Paper Award Runner-Up)出炉
专知会员服务
34+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员