In this paper, to address the optimization problem on a compact matrix manifold, we introduce a novel algorithmic framework called the Transformed Gradient Projection (TGP) algorithm, using the projection onto this compact matrix manifold. Compared with the existing algorithms, the key innovation in our approach lies in the utilization of a new class of search directions and various stepsizes, including the Armijo, nonmonotone Armijo, and fixed stepsizes, to guide the selection of the next iterate. Our framework offers flexibility by encompassing the classical gradient projection algorithms as special cases, and intersecting the retraction-based line-search algorithms. Notably, our focus is on the Stiefel or Grassmann manifold, revealing that many existing algorithms in the literature can be seen as specific instances within our proposed framework, and this algorithmic framework also induces several new special cases. Then, we conduct a thorough exploration of the convergence properties of these algorithms, considering various search directions and stepsizes. To achieve this, we extensively analyze the geometric properties of the projection onto compact matrix manifolds, allowing us to extend classical inequalities related to retractions from the literature. Building upon these insights, we establish the weak convergence, convergence rate, and global convergence of TGP algorithms under three distinct stepsizes. In cases where the compact matrix manifold is the Stiefel or Grassmann manifold, our convergence results either encompass or surpass those found in the literature. Finally, through a series of numerical experiments, we observe that the TGP algorithms, owing to their increased flexibility in choosing search directions, outperform classical gradient projection and retraction-based line-search algorithms in several scenarios.
翻译:暂无翻译