Contrast-enhanced Computed Tomography (CT) is important for diagnosis and treatment planning for various medical conditions. Deep learning (DL) based segmentation models may enable automated medical image analysis for detecting and delineating tumors in CT images, thereby reducing clinicians' workload. Achieving generalization capabilities in limited data domains, such as radiology, requires modern DL models to be trained with image augmentation. However, naively applying augmentation methods developed for natural images to CT scans often disregards the nature of the CT modality, where the intensities measure Hounsfield Units (HU) and have important physical meaning. This paper challenges the use of such intensity augmentations for CT imaging and shows that they may lead to artifacts and poor generalization. To mitigate this, we propose a CT-specific augmentation technique, called Random windowing, that exploits the available HU distribution of intensities in CT images. Random windowing encourages robustness to contrast-enhancement and significantly increases model performance on challenging images with poor contrast or timing. We perform ablations and analysis of our method on multiple datasets, and compare to, and outperform, state-of-the-art alternatives, while focusing on the challenge of liver tumor segmentation.
翻译:暂无翻译