It was recently shown that the Madelung equations, that is, a hydrodynamic form of the Schr\"odinger equation, can be derived from a canonical ensemble of neural networks where the quantum phase was identified with the free energy of hidden variables. We consider instead a grand canonical ensemble of neural networks, by allowing an exchange of neurons with an auxiliary subsystem, to show that the free energy must also be multivalued. By imposing the multivaluedness condition on the free energy we derive the Schr\"odinger equation with "Planck's constant" determined by the chemical potential of hidden variables. This shows that quantum mechanics provides a correct statistical description of the dynamics of the grand canonical ensemble of neural networks at the learning equilibrium. We also discuss implications of the results for machine learning, fundamental physics and, in a more speculative way, evolutionary biology.
翻译:最近有人证明,Madelung方程式,即Schr\'odinger方程式的一种流体动力学形式,可以从一个神经网络的库式组合中产生,其中量级网络与隐藏变量的自由能量相匹配。我们考虑的是神经网络的大库式组合,允许神经元和一个辅助子系统交换神经元,以表明自由能源也必须具有多重价值。通过对自由能源施加多值条件,我们得出Schr\'odinger方程式,由隐藏变量的化学潜力决定的“Planck的常数”。这表明量级力学在学习平衡时对神经网络的大库式组合的动态提供了正确的统计描述。我们还讨论了结果对机器学习、基础物理学和以更具投机性的方式对进化生物学的影响。