In applications such as object tracking, time-series data inevitably carry missing observations. Following the success of deep learning-based models for various sequence learning tasks, these models increasingly replace classic approaches in object tracking applications for inferring the objects' motion states. While traditional tracking approaches can deal with missing observations, most of their deep counterparts are, by default, not suited for this. Towards this end, this paper introduces a transformer-based approach for handling missing observations in variable input length trajectory data. The model is formed indirectly by successively increasing the complexity of the demanded inference tasks. Starting from reproducing noise-free trajectories, the model then learns to infer trajectories from noisy inputs. By providing missing tokens, binary-encoded missing events, the model learns to in-attend to missing data and infers a complete trajectory conditioned on the remaining inputs. In the case of a sequence of successive missing events, the model then acts as a pure prediction model. The abilities of the approach are demonstrated on synthetic data and real-world data reflecting prototypical object tracking scenarios.


翻译:在物体跟踪等应用中,时间序列数据不可避免地会丢失观测结果。在各种序列学习任务的深学习模型成功之后,这些模型越来越多地取代用于推断物体运动状态的物体跟踪应用的经典方法。传统跟踪方法可以处理缺失的观测结果,但默认情况下,其大部分深度对等方法不适于这种情况。为此,本文件引入了一种基于变压器的方法,用于处理不同输入长度轨道数据中缺失的观测结果。该模型通过不断增加所需推断任务的复杂性而间接形成。从再生成无噪音轨道开始,该模型然后学习从噪音输入中推导出弹道。通过提供缺失的标记、二元编码的缺失事件,该模型学会对缺失数据进行内置,并推导出以剩余输入为条件的完整轨迹。如果是一系列连续失踪事件,模型随后起到纯粹的预测模型作用。该方法的能力通过合成数据和反映原型物体跟踪设想的真实数据得到证明。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
NIPS 2018 | 轨迹卷积网络 TrajectoryNet
极市平台
8+阅读 · 2019年2月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
NIPS 2018 | 轨迹卷积网络 TrajectoryNet
极市平台
8+阅读 · 2019年2月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员