Chernoff bound is a fundamental tool in theoretical computer science. It has been extensively used in randomized algorithm design and stochastic type analysis. Discrepancy theory, which deals with finding a bi-coloring of a set system such that the coloring of each set is balanced, has a huge number of applications in approximation algorithms design. Chernoff bound [Che52] implies that a random bi-coloring of any set system with $n$ sets and $n$ elements will have discrepancy $O(\sqrt{n \log n})$ with high probability, while the famous result by Spencer [Spe85] shows that there exists an $O(\sqrt{n})$ discrepancy solution. The study of hyperbolic polynomials dates back to the early 20th century when used to solve PDEs by G{\aa}rding [G{\aa}r59]. In recent years, more applications are found in control theory, optimization, real algebraic geometry, and so on. In particular, the breakthrough result by Marcus, Spielman, and Srivastava [MSS15] uses the theory of hyperbolic polynomials to prove the Kadison-Singer conjecture [KS59], which is closely related to discrepancy theory. In this paper, we present a list of new results for hyperbolic polynomials: * We show two nearly optimal hyperbolic Chernoff bounds: one for Rademacher sum of arbitrary vectors and another for random vectors in the hyperbolic cone. * We show a hyperbolic anti-concentration bound. * We generalize the hyperbolic Kadison-Singer theorem [Br\"a18] for vectors in sub-isotropic position, and prove a hyperbolic Spencer theorem for any constant hyperbolic rank vectors. The classical matrix Chernoff and discrepancy results are based on determinant polynomial. To the best of our knowledge, this paper is the first work that shows either concentration or anti-concentration results for hyperbolic polynomials. We hope our findings provide more insights into hyperbolic and discrepancy theories.


翻译:切诺维系是理论计算机科学的一个基本工具。 它被广泛用于随机算法设计和随机算法类型分析。 偏差理论涉及找到一套系统的双色, 这样每套的颜色是平衡的。 在近似算法设计中有大量应用。 切诺维系[ che52] 意味着任何含有 $ 和 $ 元素的设定系统随机双色。 高概率的 O( sqrt{n\log n} 。 Spence [Spe85] 的著名结果显示, 存在一个 美元( sqrt{n} ) 的定型系统, 使每套数据集的颜色平衡化。 切诺诺诺贝尔( b) 意味着, 任何带有 $ 和 美元 元元值的定型系统随机双色 。 最近几年里, 用于控制理论、 优化、 真实的离位数的离子( orlistalal) 等值。 特别是, 马库斯鲁士利、 直立、 Spielman 和Slevalimal 的理论的突破结果显示 15 相关结果。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年9月3日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员