In this paper, we study three representations of lattices by means of a set with a binary relation of compatibility in the tradition of Plo\v{s}\v{c}ica. The standard representations of complete ortholattices and complete perfect Heyting algebras drop out as special cases of the first representation, while the second covers arbitrary complete lattices. The third topological representation is a variant of that of Craig, Havier, and Priestley. We then add a second relation of accessibility interacting with compatibility in order to represent lattices with a multiplicative unary operation. The resulting representations yield an approach to semantics for modal logics on non-classical bases, motivated by a recent application of modal orthologic to natural language semantics.
翻译:在本文中,我们通过一套符合Plo\v{s{v{v{c}ica传统兼容性的二进制关系来研究三种拉托梯的三种表达方式。 完整的正方形和完整的完美海代代数的标准表述方式作为第一个表达方式的特殊情况而退出, 而第二个表达方式则包括任意完整的拉托克。 第三个表层代表方式是克雷格、 哈维尔和皮斯利的变体。 然后我们加上第二个相容性互动关系, 以代表多复制性非操作的拉托克。 由此产生的表达方式产生了一种非古典基础的模型逻辑的语义学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学。