Innovative foundation models, such as GPT-3 and stable diffusion models, have made a paradigm shift in the realm of artificial intelligence (AI) towards generative AI-based systems. In unison, from data communication and networking perspective, AI and machine learning (AI/ML) algorithms are envisioned to be pervasively incorporated into the future generations of wireless communications systems, highlighting the need for novel AI-native solutions for the emergent communication scenarios. In this article, we outline the applications of generative AI in wireless communication systems to lay the foundations for research in this field. Diffusion-based generative models, as the new state-of-the-art paradigm of generative models, are introduced, and their applications in wireless communication systems are discussed. Two case studies are also presented to showcase how diffusion models can be exploited for the development of resilient AI-native communication systems. Specifically, we propose denoising diffusion probabilistic models (DDPM) for a wireless communication scheme with non-ideal transceivers, where 30% improvement is achieved in terms of bit error rate. As the second application, DDPMs are employed at the transmitter to shape the constellation symbols, highlighting a robust out-of-distribution performance. Finally, future directions and open issues for the development of generative AI-based wireless systems are discussed to promote future research endeavors towards wireless generative AI (WiGenAI).
翻译:暂无翻译