Media news are making a large part of public opinion and, therefore, must not be fake. News on web sites, blogs, and social media must be analyzed before being published. In this paper, we present linguistic characteristics of media news items to differentiate between fake news and real news using machine learning algorithms. Neural fake news generation, headlines created by machines, semantic incongruities in text and image captions generated by machine are other types of fake news problems. These problems use neural networks which mainly control distributional features rather than evidence. We propose applying correlation between features set and class, and correlation among the features to compute correlation attribute evaluation metric and covariance metric to compute variance of attributes over the news items. Features unique, negative, positive, and cardinal numbers with high values on the metrics are observed to provide a high area under the curve (AUC) and F1-score.
翻译:媒体新闻在公众舆论中占据了很大一部分,因此,决不能是虚假的。网站、博客和社交媒体上的新闻在发表之前必须加以分析。在本文中,我们介绍媒体新闻项目的语言特点,以使用机器学习算法区分假新闻和真新闻。神经新闻的生成、机器制作的头条新闻、文字中的语义不一致和机器制作的图像字幕是其他类型的假新闻问题。这些问题使用神经网络,主要控制分布特征,而不是证据。我们提议在设置的特征和等级之间应用相关关系,在特征之间应用相关关系来计算相关属性评价指标和共变指数,以计算新闻项目属性的差异。观察到指标的独特性、负性、正性以及具有高值的主要数字,以提供曲线(AUC)和F1分下的高区域。