The manual annotation for large-scale point clouds costs a lot of time and is usually unavailable in harsh real-world scenarios. Inspired by the great success of the pre-training and fine-tuning paradigm in both vision and language tasks, we argue that pre-training is one potential solution for obtaining a scalable model to 3D point cloud downstream tasks as well. In this paper, we, therefore, explore a new self-supervised learning method, called Mixing and Disentangling (MD), for 3D point cloud representation learning. As the name implies, we mix two input shapes and demand the model learning to separate the inputs from the mixed shape. We leverage this reconstruction task as the pretext optimization objective for self-supervised learning. There are two primary advantages: 1) Compared to prevailing image datasets, eg, ImageNet, point cloud datasets are de facto small. The mixing process can provide a much larger online training sample pool. 2) On the other hand, the disentangling process motivates the model to mine the geometric prior knowledge, eg, key points. To verify the effectiveness of the proposed pretext task, we build one baseline network, which is composed of one encoder and one decoder. During pre-training, we mix two original shapes and obtain the geometry-aware embedding from the encoder, then an instance-adaptive decoder is applied to recover the original shapes from the embedding. Albeit simple, the pre-trained encoder can capture the key points of an unseen point cloud and surpasses the encoder trained from scratch on downstream tasks. The proposed method has improved the empirical performance on both ModelNet-40 and ShapeNet-Part datasets in terms of point cloud classification and segmentation tasks. We further conduct ablation studies to explore the effect of each component and verify the generalization of our proposed strategy by harnessing different backbones.


翻译:大型点云的手动批注花费了很多时间, 通常在严酷的现实世界情景中无法使用。 受预培训和微调模式在视觉和语言任务中的巨大成功启发, 我们争论说, 预培训是获取可缩放模型到 3D 点云下游任务的一个潜在解决方案。 因此, 在本文中, 我们探索一种新的自监督学习方法, 名为 Mixing and Disentangling (MD), 用于学习 3D 点云流的演示。 正如名称所暗示的那样, 我们混合两个输入形状, 并要求模型学习将输入从混合形状中分离出来。 我们利用这一重建任务作为自我监督学习的借口优化目标。 有两大优点:(1) 将当前图像模型比对 3D点云下游任务进行缩放。 混合过程可以提供更大的在线培训前样本库。 2 在另一边, 衰变进程可以激励模型去定位之前的知识, 我们从简单、 关键点, 将模型学习的模型分解解析, 将一个模型比重的模型转换成一个基础任务。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2020年7月21日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员