In this paper, we present the new Orthogonal Polynomials-Quadrature Algorithm (OPQA), a parallelizable algorithm that estimates both the posterior and the evidence in a Bayesian analysis in one pass by means of a functional analytic approach. First, OPQA relates the evidence to an orthogonal projection onto a special basis of our construct. Second, it lays out a fast and accurate computational scheme to compute the transform coefficients. OPQA can be summarized as follows. First, we consider the $L^2$ space associated with a measure with exponential weights. Then we constuct a multivariate orthogonal basis which is dense in this space, such density being guaranteed by the Riesz's Theorem. As we project the square root of the joint distribution onto this basis of our choice, the density of the basis allows us to invoke the Parseval Identity, which equates the evidence with the sum of squares of the transform coefficients of this orthogonal projection. To compute those transform coefficients, we propose a computational scheme using Gauss-Hermite quadrature in higher dimensions. Not only does this approach avoids the potential high variance problem associated with random sampling methods, it significantly reduces the complexity of the computation and enables one to speed up the computational speed by parallelization. This new algorithm does not make any assumption about the independence of the latent variable, nor do we assume any knowledge of the prior. It solves for both the evidence and the posterior in one pass. An outline of the theoretical proof of the supporting algorithm will be provided.
翻译:在本文中, 我们展示了新的 Orthogoal 多边模拟- 二次夸度 Algorithm (OPQA), 这是一种平行的算法, 通过功能分析法, 以功能分析法在一条通道中估计后端和巴伊西亚分析中的证据。 首先, OPQA 将证据与一个正方位投影联系起来, 并将其作为我们构造的特殊基础。 其次, 它提供了计算变异系数的快速和准确计算方法。 OPQA 可以概括如下。 首先, 我们考虑与指数重量测量的测量相联的 $L% 2 空间。 然后, 我们用一个平行的计算法, 我们用Riesz Theorem来保证这种密度。 当我们将联合分布的正方位根投影到我们构造的这个基础时, 基础的密度允许我们引用“ 扭曲值” 的计算方法。 它与这个或度投影的变异系数之和正方格之和。 为了支持这些变异性系数的数值, 我们用一个概率计算方法来大大地计算这些变异数的数值。 。 我们建议一个数字的计算方法来降低的计算方法, 。 将只用来避免一个变变变数的计算方法, 。