The success of contextual word representations and advances in neural information retrieval have made dense vector-based retrieval a standard approach for passage and document ranking. While effective and efficient, dual-encoders are brittle to variations in query distributions and noisy queries. Data augmentation can make models more robust but introduces overhead to training set generation and requires retraining and index regeneration. We present Contrastive Alignment POst Training (CAPOT), a highly efficient finetuning method that improves model robustness without requiring index regeneration, the training set optimization, or alteration. CAPOT enables robust retrieval by freezing the document encoder while the query encoder learns to align noisy queries with their unaltered root. We evaluate CAPOT noisy variants of MSMARCO, Natural Questions, and Trivia QA passage retrieval, finding CAPOT has a similar impact as data augmentation with none of its overhead.


翻译:成功的语境词表示和神经信息检索的进展使得基于密集向量的检索成为段落和文档排序的标准方法。尽管有效且高效,但双编码器在查询分布变化和嘈杂查询中很脆弱。数据增强可以使模型更加鲁棒,但会引入培训集生成的开销,并需要重新培训和索引再生。我们提出了对比校准后训练(CAPOT),一种高效的微调方法,通过将文档编码器冻结,而查询编码器学习将嘈杂查询与其未变化的根对齐,从而提高模型的鲁棒性。我们评估了CAPOT在MSMARCO,自然问题和问答检索中的嘈杂变体,发现CAPOT具有与数据增强相似但没有其开销的影响。

0
下载
关闭预览

相关内容

EMNLP 2022 | 校准预训练模型中的事实知识
PaperWeekly
1+阅读 · 2022年11月22日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月22日
VIP会员
相关VIP内容
相关资讯
EMNLP 2022 | 校准预训练模型中的事实知识
PaperWeekly
1+阅读 · 2022年11月22日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员