Task allocation plays a vital role in multi-robot autonomous cleaning systems, where multiple robots work together to clean a large area. However, there are several problems in relevant research to date. Most current studies mainly focus on deterministic, single-task allocation for cleaning robots, without considering hybrid tasks in uncertain working environments. Moreover, there is a lack of datasets and benchmarks for relevant research. In this paper, we contribute to multi-robot hybrid-task allocation for uncertain autonomous cleaning systems by addressing these problems. First, we model the uncertainties in the cleaning environment via robust optimization and propose a novel robust mixed-integer linear programming model with practical constraints including hybrid cleaning task order and robot's ability. Second, we establish a dataset of 100 instances made from floor plans, each of which has 2D manually-labeled images and a 3D model. Third, we provide comprehensive results on the collected dataset using three traditional optimization approaches and a deep reinforcement learning-based solver. The evaluation results show that our formulation meets the needs of multi-robot cleaning task allocation and the robust solver can protect the system from the worst cases with little additional cost. The benchmark will be available at {https://github.com/iamwangyabin/Multi-robot-Cleaning-Task-Allocation}.


翻译:任务分配在多机器人自主清理系统中发挥着关键作用,多机器人在多机器人自主清理系统中共同努力清理大面积区域。 但是,迄今为止,相关研究中存在若干问题。 目前的大多数研究主要侧重于清洁机器人的确定性、单一任务分配,而没有考虑工作环境中的混合任务。此外,缺乏数据集和相关研究基准。在本文件中,我们通过解决这些问题,为多机器人混合任务分配多机器人自动清理系统提供了多种机器人混合任务分配。首先,我们通过强力优化来模拟清洁环境中的不确定性,并提出了一个新的强力混合整流线性编程模型,其中含有各种实际限制,包括混合清洁任务订单和机器人的能力。第二,我们从地表计划中建立了100个实例数据集,每个实例都有2D手动标签图像和3D模型。第三,我们利用三种传统优化方法和一个更深的强化学习解决方案,提供关于所收集数据集的全面结果。评价结果表明,我们的配方满足了多机器人清理任务分配的需要,而坚固的溶剂编程能够保护系统免遭最坏的事例,包括混合清理任务分配和机器人能力。我们将在微成本基准上提供。</s>

0
下载
关闭预览

相关内容

【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员