We introduce a novel approach to inference on parameters that take values in a Riemannian manifold embedded in a Euclidean space. Parameter spaces of this form are ubiquitous across many fields, including chemistry, physics, computer graphics, and geology. This new approach uses generalized fiducial inference to obtain a posterior-like distribution on the manifold, without needing to know a parameterization that maps the constrained space to an unconstrained Euclidean space. The proposed methodology, called the constrained generalized fiducial distribution (CGFD), is obtained by using mathematical tools from Riemannian geometry. A Bernstein-von Mises-type result for the CGFD, which provides intuition for how the desirable asymptotic qualities of the unconstrained generalized fiducial distribution are inherited by the CGFD, is provided. To demonstrate the practical use of the CGFD, we provide three proof-of-concept examples: inference for data from a multivariate normal density with the mean parameters on a sphere, a linear logspline density estimation problem, and a reimagined approach to the AR(1) model, all of which exhibit desirable coverages via simulation. We discuss two Markov chain Monte Carlo algorithms for the exploration of these constrained parameter spaces and adapt them for the CGFD.


翻译:我们引入了一种新的方法来推断嵌入欧洲大陆空间的里格曼式多元体中的数值参数。 这种形式的参数空间在化学、物理、计算机图形和地质等许多领域都普遍存在。 这种新方法使用普遍的外观推法,在多元体上获得类似后方分布,而不需要知道将有限空间映射为不受限制的欧格莱底空间的参数化。提议的方法称为限制的普遍分布(CGFD ), 是通过使用里格曼尼亚地貌学数学工具获得的。 这种形式的参数空间在化学、物理、计算机图形和地质学等许多领域都普遍存在。 这种新方法为CGFD所继承的未受限制的普遍分布的可取性属性提供了直观性推论。 为了展示CGFD的实际用途,我们提供了三个证据性实例:从多变正常密度中得出数据以及一个领域的平均参数的推论, 一种线性对流密度的密度估计,一种伯斯坦-冯·米斯型结果,为CGFAR1 提供了直观性分析, 并用我们两个理想的CFA-C-C-C-Sqolimal viewsimal viewslal 来讨论这些Aviewsimation Exviolal viewal view view view violal view viewsal violal violviolview violviolview viold vicolal violalbol violal vical vicolvicoldalpolviolvicolvicold vicold vicoldald 。我们这些这些这些 vicoldaldal 方法,我们这些 方法, 。我们这些 的模型, vicolal 方法,我们用了这些 的模型,我们这些 的模型,我们通过两个Avicolal 方法,以便 和这些 vicolal vicolal vicolal vicololololal vicolal vicolal vicolal 方法,以这些 的模型,以这些模型,我们这些 的模型,以便这些模型的模型的模型的模型,我们

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员