Purpose of review: We review recent advances in algorithmic development and validation for modeling and control of soft robots leveraging the Koopman operator theory. Recent findings: We identify the following trends in recent research efforts in this area. (1) The design of lifting functions used in the data-driven approximation of the Koopman operator is critical for soft robots. (2) Robustness considerations are emphasized. Works are proposed to reduce the effect of uncertainty and noise during the process of modeling and control. (3) The Koopman operator has been embedded into different model-based control structures to drive the soft robots. Summary: Because of their compliance and nonlinearities, modeling and control of soft robots face key challenges. To resolve these challenges, Koopman operator-based approaches have been proposed, in an effort to express the nonlinear system in a linear manner. The Koopman operator enables global linearization to reduce nonlinearities and/or serves as model constraints in model-based control algorithms for soft robots. Various implementations in soft robotic systems are illustrated and summarized in the review.
翻译:审查的目的:我们审查利用Koopman操作员理论对软机器人进行模拟和控制的算法开发和验证方面的最新进展。最近的调查结果:我们查明这一领域最近研究工作的下列趋势。(1) Koopman操作员数据驱动近似法中使用的提升功能的设计对软机器人至关重要。(2) 强性考虑得到强调。提议减少模型和控制过程中不确定性和噪音的影响。(3) Koopman操作员已嵌入不同的基于模型的控制结构,以驱动软机器人。摘要:由于这些操作员的合规性和非线性,软机器人的模型和控制权面临重大挑战。为应对这些挑战,提议了基于Koopman操作员的方法,以便以线性方式表达非线性系统。Koopman操作员使全球线性化能够减少非线性,和/或作为软机器人模型控制算法的典型制约。审查中说明并总结了软机器人系统的各种实施情况。