Phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems. Here, we develop a new analytical approach based on bifurcation analysis to explore the mathematical solution structure of phase field models. Revealing such solution structures not only is of great mathematical interest but also may provide guidance to experimentally or computationally uncover new morphological evolution phenomena in materials undergoing electronic and structural phase transitions. To elucidate the idea, we apply this analytical approach to three representative phase field equations: Allen-Cahn equation, Cahn-Hilliard equation, and Allen-Cahn-Ohta-Kawasaki system. The solution structures of these three phase field equations are also verified numerically by the homotopy continuation method.
翻译:阶段场方法在理解和预测材料和生物系统的形态演变方面正在发挥越来越重要的作用。在这里,我们根据两侧分析开发了一种新的分析方法,以探索阶段场模型的数学解决方案结构。释放这些解决方案结构不仅具有巨大的数学意义,而且可能为实验或计算发现正在电子和结构阶段过渡的材料中新的形态演变现象提供指导。为了阐明这一想法,我们对三个具有代表性的阶段方程式应用了这种分析方法:艾伦-卡恩方程式、卡赫恩-希利亚德方程式和艾伦-卡恩-奥塔-卡瓦萨基系统。这三个阶段方程式的解决方案结构也通过同质持续法进行数字核查。